55. 跳跃游戏(Medium)
题解
Python示例
Bottom To Top 使用递归自底向上
# 超时 75/76
class Solution:
def canJump(self, nums: List[int]) -> bool:
def jump(start):
if meno[start] == 1: return True
elif meno[start] == -1: return False
# meno[start] == 0 状态不确定
end = min(start + nums[start], len(nums) - 1)
for i in range(start + 1, end + 1): # 至少跳一步,不然死循环
if jump(i):
meno[i] = True
return True
meno[start] = -1
return False
meno = [0] * len(nums) # bottom to top
meno[-1] = 1
return jump(0)
Bottom To Top 动态规划
class Solution:
def canJump(self, nums: List[int]) -> bool:
dp = [0] * len(nums) # dp 记录的是每位的状态
dp[0] = 1
for i in range(1, len(nums)): # 求出第i个位置是否可达
for j in range(i)[::-1]: # 从 i - 1 到 0 倒叙遍历
if dp[j] and i - j <= nums[j]:
dp[i] = 1
break # 剪枝
return bool(dp[-1]) # 看最后一位元素是否可达
// go 是不会超时
func canJump(nums []int) bool {
dp := make([]int, len(nums))
dp[0] = 1
for i := 1; i < len(nums); i++ {
for j:= 0; j < i; j++ {
if i - j <= nums[j] && dp[j] == 1{ // j 可达 而且 可以跳到
dp[i] = 1
break
}
}
}
return dp[len(nums) - 1] == 1
}
Top To Buttom 动态规划
# 超时 75/76
class Solution:
def canJump(self, nums: List[int]) -> bool:
dp = [0] * len(nums)
dp[-1] = 1
for i in range(len(nums) -2, -1, -1):
for j in range(i + 1, max(i + nums[i] + 1, len(nums))):
if dp[j] == 1:
dp[i] = 1
break
return bool(dp[0])
贪心法--最优解
class Solution:
def canJump(self, nums: List[int]) -> bool:
maxJamp = len(nums) - 1 # maxJump 代表的点一定是可达的,显然最后一个点一定是可达的
for i in range(len(nums) - 2, -1, -1):
if nums[i] + i >= maxJamp: # 只要我能跳到可达的点,那我一定也是可达的
maxJamp = i
return maxJamp == 0
func canJump(nums []int) bool {
maxJump := len(nums) - 1
for i := len(nums) - 2; i >= 0; i-- {
if nums[i] + i >= maxJump { // i 能够跳到
maxJump = i
}
}
return maxJump == 0
}