64. 最小路径和(Medium)
题目描述
给定一个包含非负整数的 m x n
网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
**说明:**每次只能向下或者向右移动一步。
样例
Input:grid = [[1,3,1],[1,5,1],[4,2,1]]
Output:7
解释:因为路径 1→3→1→1→1 的总和最小。
Input:grid = [[1,2,3],[4,5,6]]
Output:12
题解
动态规划
Python示例
class Solution:
def minPathSum(self, grid: List[List[int]]) -> int:
if not grid: return 0
n, m = len(grid), len(grid[0])
dp = [[0] * m for _ in range(n)]
dp[0][0] = grid[0][0]
for i in range(1, m):
dp[0][i] = dp[0][i - 1] + grid[0][i]
for i in range(1, n):
dp[i][0] = dp[i - 1][0] + grid[i][0]
for i in range(1, n):
for j in range(1, m):
dp[i][j] = grid[i][j] + min(dp[i - 1][j], dp[i][j - 1])
return dp[n - 1][m - 1]
Go 示例
func min (a, b int) int {
if a > b {
return b
}
return a
}
func minPathSum(grid [][]int) int {
if len(grid) == 0 || len(grid[0]) == 0 {
return 0
}
n, m := len(grid), len(grid[0])
dp := make([][]int, n)
for i := 0; i < n; i++ {
dp[i] = make([]int, m)
}
dp[0][0] = grid[0][0]
for i := 1; i < m; i ++ {
dp[0][i] = dp[0][i - 1] + grid[0][i]
}
for i := 1; i < n; i ++ {
dp[i][0] = dp[i - 1][0] + grid[i][0]
}
for i := 1; i < n; i++ {
for j:= 1; j < m; j++ {
dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j]
}
}
fmt.Println(dp)
return dp[n - 1][m - 1]
}